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1.2.3 Statistical estimation

In this section, we present the most classical estimators of the measures of association
introduced in the previous section, including the linear correlation due to its widespread
use, even if it is not a measure of association.

The sampling definition of the linear correlation coefficient is given by:

Definition 1.37. Let
(
(Xk

1 , X
k
2 )
)
k=1,...,N

be a sample of size N of the random vector
X = (X1, X2). The sampling linear correlation coefficient ρ̂N (X1, X2) is defined by

ρ̂N (X) =
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where X̄1 = 1
N

∑N
k=1X

k
1 and X̄2 = 1

N

∑N
k=1X

k
2 .

The asymptotic properties of this estimator are given in the following theorems [Gay51,
Equations 53 and 54]:

Theorem 1.38. Let X be a bi-dimensional random vector with finite second moments
E
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1
]
<∞ and E
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X2

2
]
<∞. Then:

ρ̂N (X) a.s→ ρ(X) when N →∞

Theorem 1.39. Let X be a bi-dimensional random vector with finite fourth-order mo-
ments E
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X4

1
]
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]
<∞. Then:

√
N (ρ̂N (X)− ρ(X)) D→ N (0, σ2

ρ) when N →∞

where the asymptotic variance σ2
ρ is given by:
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where mk` = E
[
(X1 − µ1)k(X2 − µ2)`

]
, µ1 = E [X1] and µ2 = E [X2].

The notion of rank plays a key role in the estimation of measures of association.

Definition 1.40. Let (Xk)k=1,...,N be a sample of size N of the random variable X and
σ ∈ SN a random permutation such that Xσ(1) ≤ . . . ≤ Xσ(N) a.s. (such a permutation
is almost surely unique if X is continuous). The rank of Xk is defined by:

rank(Xk) = σ−1(k)

It is the random position of Xk in the sorted sample (Xσ(k))k=1,...,N .

The definition of the Spearman rho coupled with the expression of the linear correlation
coefficient estimator given previously, we estimate the Spearman rho as being the linear
correlation coefficient of the ranks of the observations. For the case where there is no
tie in the observations, which is the case of interest for applications with continuous
distributions, we are able to express this estimator in a more compact way:
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Definition 1.41. Let
(
(Xk

1 , X
k
2 )
)
k=1,...,N

be a sample of size N of the random vector
X = (X1, X2). The Spearman rho estimator ρ̂S,N (X) is the linear correlation coefficient
estimator applied to the ranks of the given sample:

ρ̂S,N (X) =
∑n
k=1

(
rank(Xk

1 )− rank(X1)
) (

rank(Xk
2 )− rank(X2)

)
√∑N

k=1

(
rank(Xk

1 )− rank(X1)
)2∑N
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(
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)2

(1.32)

where rank(X1) = 1
N

∑N
k=1 rank(Xk

1 ) and rank(X2) = 1
N

∑N
k=1 rank(Xk

2 ). If there is no
tie, i.e. ∀i, j, (i 6= j)⇒ (Xi

1 6= Xj
1 orXi

2 6= Xj
2), the sampling Spearman rho ρ̂S,N (X1, X2)

is given by

ρ̂S,N (X) = 1−
6
∑N
k=1

(
rank(Xk

1 )− rank(Xk
2 )
)2

N(N2 − 1) (1.33)

The asymptotic properties of this estimator are given in the following theorems, de-
duced from the corresponding theorems for the linear correlation coefficient and the fact
that Fi(Xi) (i = 1, 2) is uniformly distributed over [0, 1] for continuous Fi:

Theorem 1.42. Let X be a bi-dimensional continuous random vector. Then:

ρ̂S,N (X) a.s→ ρS(X) when N →∞

where ρS(X) is the Spearman rho between X1 and X2, as defined in Definition 1.2.2.

Theorem 1.43. Let X be a bi-dimensional continuous random vector. Then:
√
N (ρ̂S,N (X)− ρS(X)) D→ N (0, σ2

ρS
) when N →∞

where the asymptotic variance σ2
ρS

is given by:
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where ηk` =
∫∫

[0,1]2
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1
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)k (
u2 −

1
2

)`
C(u1, u2) du1du2 and C is the copula of X.

The definition of the Kendall tau leads to an estimator that can also be expressed
easily in terms of the discordance and concordance of the observations when there is no
tie. In this case, the estimator reads:

Definition 1.44. Let
(
(Xk

1 , X
k
2 )
)
k=1,...,N

be a sample of size N of the random vector
X = (X1, X2). The sampling Kendall tau τ̂N (X1, X2) is given by

τ̂N (X) = 2
N(N − 1)

∑
1≤i<j≤N

sgn(Xi
1 −X

j
1) sgn(Xi

2 −X
j
2) (1.34)
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The asymptotic properties of this estimator are given in the following theorems:

Theorem 1.45. Let X be a bi-dimensional random vector. Then:

τ̂N (X) a.s→ τ(X) when N →∞

Theorem 1.46. Let X be a bi-dimensional random vector. Then:
√
N (τ̂N (X)− τ(X)) D→ N (0, σ2

τ ) when N →∞

where the asymptotic variance σ2
τ is given by:

σ2
τ = 4 Var

[
E
[
sgn(X1 −X ′1) sgn(X2 −X ′2) |X1, X2

]]
where X ′ = (X ′1, X ′2) is an independent copy of X.

In contrast with the previous measures, no estimator for the upper or lower tail depen-
dence coefficients has become standard, despite the large amount of research in this area,
in relation with the estimation of extrem values copulas (see [KN00]). Being defined as
a limit, these quantities are difficult to estimate, and except in fully parametric contexts,
there will always be a trade-off between the bias (taking into account a large amount of
the available data, including non-extreme ones) and the variance (taking into account only
the most extreme data) of the estimator. We restrict the presentation to non-parametric
estimators, based on the empirical copula defined here:

Definition 1.47. Let
(
(Xk

1 , X
k
2 )
)
k=1,...,N

be a sample of size N of the random vector

X = (X1, X2). The empirical copula ĈN of this sample is the bivariate function defined
by:

∀(u1, u2) ∈ [0, 1]2, ĈN (u1, u2) = 1
N

N∑
k=1

1(rank(Xk
1 )≤Nu1, rank(Xk

2 )≤Nu2) (1.35)

We present a non-parametric estimators of the upper-tail coefficient based on the
empirical copula of block maxima proposed in [SS04] and in [FJS05]:

Definition 1.48. Let
(
(Xk

1 , X
k
2 )
)
k=1,...,N

be a sample of size N of the random vector
X = (X1, X2). Let m be a positive integer and ` = [N/m]. We consider the sample(
(x∗j1 , x

∗j
2 )
)
j=1,...,m

of componentwise block maxima:

x∗j1 = max
{
Xi

1, i = 1 + (j − 1)`, . . . , j`
}

x∗j2 = max
{
Xi

2, i = 1 + (j − 1)`, . . . , j`
}

for j = 1, . . . ,m. For a given integer threshold 0 < k(m) < m, the upper tail coefficient
λU can be estimated by:

λ̂U,m(X) =2−
1− Ĉm

(
m−k
m , m−km

)
1− m−k

m
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The parameters m and k allow to deal with the bias/variance trade-off. The properties
of this estimator are given in the following theorems, given in [SS04, Theorem 7] and [SS04,
Corollary 2]:

Theorem 1.49. Let X be a bi-dimensional random vector with continuous marginal
distribution function. If the upper tail copula ΛU 6= 0 exists and k(m) is such that
k(m)/ log logm→ 0 as m→∞. Then:

λ̂U,m(X) a.s→ λU (X) when m→∞

Theorem 1.50. Let X be a bi-dimensional random vector with continuous marginal dis-
tribution function. If the upper tail copula ΛU 6= 0 exists, possesses continuous par-
tial derivatives, and satisfies the additional second order condition: it exists a function
A : R+ → R+ such that A(t)→ 0 as t→∞ and:

lim
t→∞

ΛU (u)− (1− t)C(1− u1/t, 1− u2/t)
A(t) = g(u) <∞

locally uniformly for u ∈ [0, 1]2 and some nonconstant function g.
Then, if

√
k(m)A(m/k(m))→ 0 as m→∞:√

k(m)
(
λ̂U,m(X)− λU (X)

) D→ N (0, σ2
U ) when m→∞

with

σ2
U =λU (X) +

(
∂

∂x
ΛU (1, 1)

)2
+
(
∂

∂y
ΛU (1, 1)

)2
+

2λU (X)
((

∂

∂x
ΛU (1, 1)− 1

)(
∂

∂y
ΛU (1, 1)− 1

)
− 1

)
.

Conclusion
In this introductory chapter, we have introduced several concepts and measures linked

with dependence modeling that will be used in the sequel of the manuscript. It covers both
the probabilistic aspects linked with the distribution function of a random vector and the
dependence quantification through scalar measures. We have also given some elements on
statistical estimation of these measures given a set of multidimensional data.


